Powered By Blogger

Friday, March 25, 2011

THERMODYNAMICS

 THERMODYNAMICS
     Thermodynamics is the science of energy conversion involving heat and other forms of energy, most notably mechanical work. It studies and interrelates the macroscopic variables, such as temperature, volume and pressure, which describe physical, thermodynamic systems.
Historically, thermodynamics developed out of a desire to increase the efficiency of early steam engines, particularly through the work of French physicist Nicolas Léonard Sadi Carnot (1824) who believed that engine efficiency was the key that could help France win the Napoleonic Wars.[1] Scottish physicist Lord Kelvin was the first to formulate a concise definition of thermodynamics in 1854:[2]
Thermo-dynamics is the subject of the relation of heat to forces acting between contiguous parts of bodies, and the relation of heat to electrical agency.
The initial application of thermodynamics to mechanical heat engines was extended early on to the study of chemical systems. Chemical thermodynamics studies the nature of the role of entropy in the process of chemical reactions and provided the bulk of expansion and knowledge of the field.[3][4][5][6][7][8][9][10][11] Other formulations of thermodynamics emerged in the following decades. Statistical thermodynamics, or statistical mechanics, concerned itself with statistical predictions of the collective motion of particles from their microscopic behavior. In 1909, Constantin Carathéodory presented a purely mathematical approach to the field in his axiomatic formulation of thermodynamics, a description often referred to as geometrical thermodynamics. Although these levels of description required increasingly difficult mathematical tools, and are therefore often taught independently, modern thermodynamics is practiced as an amalgamation of all descriptions, without intentional separation of view points.

 Introduction
     Central to thermodynamics are the concepts of system and surroundings.[7][12] A thermodynamic system is a macroscopic physical object, explicitly specified in terms of macroscopic physical and chemical variables which describe its macroscopic properties. The macroscopic variables of thermodynamics have been recognized in the course of empirical work in physics and chemistry.[8] They are of two kinds, extensive and intensive.[7][13] Examples of extensive thermodynamic variables are total mass and total volume. Examples of intensive thermodynamic variables are temperature, pressure, and chemical concentration; intensive thermodynamic variables are defined at each spatial point and each instant of time in a system. Physical macroscopic variables can be mechanical or thermal.[13] Temperature is a thermal variable; according to Guggenheim, "the most important conception in thermodynamics is temperature."[7] The surroundings of a thermodynamic system are other thermodynamic systems that can interact with it. An example of a thermodynamic surrounding is a heat bath, which is considered to be held at a prescribed temperature, regardless of the interactions it might have with the system.
The macroscopic variables of a thermodynamic system can under some conditions be related to one another through equations of state. They can be combined to express internal energy and thermodynamic potentials, which are useful for determining conditions for equilibrium and spontaneous processes.
Thermodynamics describes how systems change when they interact with one another or with their surroundings. This can be applied to a wide variety of topics in science and engineering, such as engines, phase transitions, chemical reactions, transport phenomena, and even black holes. The results of thermodynamics are essential for other fields of physics and for chemistry, chemical engineering, aerospace engineering, mechanical engineering, cell biology, biomedical engineering, materials science, and economics, to name a few.[14][15] Many of the empirical facts of thermodynamics are comprehended in its four laws, principles that can also be taken as an axiomatic basis for it. The first law specifies that energy can be exchanged between physical systems as heat and thermodynamic work.[16] The second law concerns a quantity called entropy, that expresses limitations on the amount of thermodynamic work that can be delivered to an external system by a thermodynamic process.[17]

     Thermodynamic facts can often be explained by viewing macroscopic objects as assemblies of very many microscopic or atomic objects that obey Hamiltonian dynamics.[18][7][13] The microscopic or atomic objects exist in species, the objects of each species being all alike. Because of this likeness, statistical methods can be used to account for the macroscopic properties of the thermodynamic system in terms of the properties of the microscopic species. Such explanation is called statistical thermodynamics; also often it is also referred to by the term 'statistical mechanics', though this this term can have a wider meaning, referring to 'microscopic objects', such as economic quantities, that do not obey Hamiltonian dynamics.[13]
This article is focused mainly on classical thermodynamics which primarily studies systems in thermodynamic equilibrium. Non-equilibrium thermodynamics is often treated as an extension of the classical treatment, but statistical mechanics has brought many advances of the field.
The history of thermodynamics as a scientific discipline generally begins with Otto von Guericke who, in 1650, built and designed the world's first vacuum pump and demonstrated a vacuum using his Magdeburg hemispheres. Guericke was driven to make a vacuum in order to disprove Aristotle's long-held supposition that 'nature abhors a vacuum'. Shortly after Guericke, the English physicist and chemist Robert Boyle had learned of Guericke's designs and, in 1656, in coordination with English scientist Robert Hooke, built an air pump.[20] Using this pump, Boyle and Hooke noticed a correlation between pressure, temperature, and volume. In time, Boyle's Law was formulated, which states that pressure and volume are inversely proportional. Then, in 1679, based on these concepts, an associate of Boyle's named Denis Papin built a steam digester, which was a closed vessel with a tightly fitting lid that confined steam until a high pressure was generated.
     Later designs implemented a steam release valve that kept the machine from exploding. By watching the valve rhythmically move up and down, Papin conceived of the idea of a piston and a cylinder engine. He did not, however, follow through with his design. Nevertheless, in 1697, based on Papin's designs, engineer Thomas Savery built the first engine, followed by Thomas Newcomen in 1712. Although these early engines were crude and inefficient, they attracted the attention of the leading scientists of the time.
The fundamental concepts of heat capacity and latent heat, which were necessary for the development of thermodynamics, were developed by Professor Joseph Black at the University of Glasgow, where James Watt was employed as an instrument maker. Black and Watt performed experiments together, but it was Watt who conceived the idea of the external condenser which resulted in a large increase in steam engine efficiency.[21] Drawing on all the previous work led Sadi Carnot, the "father of thermodynamics", to publish Reflections on the Motive Power of Fire (1824), a discourse on heat, power, energy and engine efficiency. The paper outlined the basic energetic relations between the Carnot engine, the Carnot cycle, and motive power. It marked the start of thermodynamics as a modern science.[10]
The first thermodynamic textbook was written in 1859 by William Rankine, originally trained as a physicist and a civil and mechanical engineering professor at the University of Glasgow.[22] The first and second laws of thermodynamics emerged simultaneously in the 1850s, primarily out of the works of William Rankine, Rudolf Clausius, and William Thomson (Lord Kelvin).
The foundations of statistical thermodynamics were set out by physicists such as James Clerk Maxwell, Ludwig Boltzmann, Max Planck, Rudolf Clausius and J. Willard Gibbs.
During the years 1873-76 the American mathematical physicist Josiah Willard Gibbs published a series of three papers, the most famous being On the Equilibrium of Heterogeneous Substances[3], in which he showed how thermodynamic processes, including chemical reactions, could be graphically analyzed, by studying the energy, entropy, volume, temperature and pressure of the thermodynamic system in such a manner, one can determine if a process would occur spontaneously.[23] Also Pierre Duhem in the 19th century wrote about chemical thermodynamics[4]. During the early 20th century, chemists such as Gilbert N. Lewis, Merle Randall[5], and E. A. Guggenheim[6][7] applied the mathematical methods of Gibbs to the analysis of chemical processes.

      The thermodynamicists representative of the original eight founding schools of thermodynamics. The schools with the most-lasting effect in founding the modern versions of thermodynamics are the Berlin school, particularly as established in Rudolf Clausius’s 1865 textbook The Mechanical Theory of Heat, the Vienna school, with the statistical mechanics of Ludwig Boltzmann, and the Gibbsian school at Yale University, American engineer Willard Gibbs' 1876 On the Equilibrium of Heterogeneous Substances launching chemical thermodynamics.[19]


No comments:

Post a Comment